Skip to main content
  • Deutsch
  • English
Dimajix
Menu
  • Expertise
    • Architektur für Big Data und Data Science
    • Data Engineering
    • Data Science & Machine Learning
    • Apache Spark & PySpark
    • Apache Hadoop
    • Data Mesh
    • Open Source
  • Akademie
    • Offene Trainings
    • Big Data
    • Apache Hadoop
    • Data Engineering mit Apache Spark & PySpark
    • Data Science mit PySpark
  • Blog
  • Über dimajix
  • Kontakt
    Close Search
    Big Data Engineering — Declarative Data Flows

    Big Data Engineering — Declarative Data Flows

    This is part 3 of a series on data engineering in a big data environment.…
    KupferschmidtAdmin
    KupferschmidtAdmin22. Oktober 2020
    Big Data Engineering — Apache Spark Allgemein

    Big Data Engineering — Apache Spark

    This is part 2 of a series on data engineering in a big data environment.…
    KupferschmidtAdmin
    KupferschmidtAdmin17. Oktober 2020
    Big Data Engineering — Best Practices Allgemein

    Big Data Engineering — Best Practices

    This is part 1 of a series on data engineering in a big data environment.…
    KupferschmidtAdmin
    KupferschmidtAdmin16. Oktober 2020
    Running Jupyter with Spark in Docker

    Running Jupyter with Spark in Docker

    most attendees of dimajix Spark workshops seem to like the hands-on approach I am offering…
    KupferschmidtAdmin
    KupferschmidtAdmin2. Oktober 2017
    Jupyter Notebooks with PySpark in AWS

    Jupyter Notebooks with PySpark in AWS

    Amazon Elastic MapReduce (EMR) is something wonderful if you need compute capacity on demand. I…
    KupferschmidtAdmin
    KupferschmidtAdmin22. Mai 2017
    Running Spark and Hadoop with S3

    Running Spark and Hadoop with S3

    Traditionally HDFS was the primary storage for Hadoop (and therefore also for Apache Spark). Naturally…
    KupferschmidtAdmin
    KupferschmidtAdmin5. Mai 2017
    Running PySpark on Anaconda in PyCharm

    Running PySpark on Anaconda in PyCharm

    Working with PySpark Currently Apache Spark with its bindings PySpark and SparkR is the processing…
    KupferschmidtAdmin
    KupferschmidtAdmin15. April 2017
    Building Druid for Cloudera 5.4.x

    Building Druid for Cloudera 5.4.x

    So the other day I wanted to investigate into using Druid as a reporting backend…
    dominik_adm1n
    dominik_adm1n23. März 2016

    Suche

    Kategorien

    • Keine Kategorien

    Archive

    dimajix. Wir sind für Sie da. Kontakt

    Kontakt

    dimajix
    Dr. Kaya Kupferschmidt
    Freiherr-vom-Stein Straße 3
    60323 Frankfurt

    Tel: 069-71588909
    E-Mail: info@dimajix.de

    Unsere Dienstleistungen

    • Beratung & Konzeption
    • Umsetzung
    • Workshops & Trainings
    Weitere Informationen zur IT-Haftpflicht von dimajix, Frankfurt

    Neueste Beiträge

    • Big Data Engineering — Declarative Data Flows
    • Big Data Engineering — Apache Spark
    • Big Data Engineering — Best Practices
    • Running Jupyter with Spark in Docker
    • Jupyter Notebooks with PySpark in AWS

    © 2025 Dimajix. Design by rocket.works.   Impressum | Datenschutz

    • linkedin
    • github
    • medium
    • phone
    • email
    Close Menu
    • Expertise
      • Architektur für Big Data und Data Science
      • Data Engineering
      • Data Science & Machine Learning
      • Apache Spark & PySpark
      • Apache Hadoop
      • Data Mesh
      • Open Source
    • Akademie
      • Offene Trainings
      • Big Data
      • Apache Hadoop
      • Data Engineering mit Apache Spark & PySpark
      • Data Science mit PySpark
    • Blog
    • Über dimajix
    • Kontakt
    • Deutsch
    • English